Littlewood–Richardson polynomials

نویسنده

  • A. I. Molev
چکیده

We introduce a family of rings of symmetric functions depending on an infinite sequence of parameters. A distinguished basis of such a ring is comprised by analogues of the Schur functions. The corresponding structure coefficients are polynomials in the parameters which we call the Littlewood–Richardson polynomials. We give a combinatorial rule for their calculation by modifying an earlier result of B. Sagan and the author. The new rule provides a formula for these polynomials which is manifestly positive in the sense of W. Graham. We apply this formula for the calculation of the product of equivariant Schubert classes on Grassmannians which implies a stability property of the structure coefficients. The first manifestly positive formula for such an expansion was given by A. Knutson and T. Tao by using combinatorics of puzzles, and the stability property can also be derived from the puzzle rule. As another application, we use the Littlewood–Richardson polynomials to describe the multiplication rule in the algebra of the (virtual) Casimir elements for the general linear Lie algebra in the basis of the (virtual) quantum immanants constructed by A. Okounkov and G. Olshanski.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Littlewood-richardson Coeecients and Kazhdan-lusztig Polynomials

We show that the Littlewood-Richardson coeecients are values at 1 of certain parabolic Kazhdan-Lusztig polynomials for aane symmetric groups. These q-analogues of Littlewood-Richardson multiplicities coincide with those previously introduced in 21] in terms of ribbon tableaux.

متن کامل

Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials

We show that the Littlewood-Richardson coefficients are values at 1 of certain parabolic Kazhdan-Lusztig polynomials for affine symmetric groups. These q-analogues of Littlewood-Richardson multiplicities coincide with those previously introduced in [21] in terms of ribbon tableaux.

متن کامل

Rc - Graphs and a Generalized Littlewood - Richardson Rule

Using a generalization of the Schensted insertion algorithm to rcgraphs, we provide a Littlewood-Richardson rule for multiplying certain Schubert polynomials by Schur polynomials.

متن کامل

Vanishing of Littlewood-Richardson polynomials is in P

J. DeLoera-T. McAllister and K. D. Mulmuley-H. Narayanan-M. Sohoni independently proved that determining the vanishing of Littlewood-Richardson coefficients has strongly polynomial time computational complexity. Viewing these as Schubert calculus numbers, we prove the generalization to the Littlewood-Richardson polynomials that control equivariant cohomology of Grassmannians. We construct a pol...

متن کامل

Combinatorial Formula for Modified Hall-Littlewood Polynomials

We obtain new combinatorial formulae for modified Hall–Littlewood polynomials, for matrix elements of the transition matrix between the elementary symmetric polynomials and Hall-Littlewood’s ones, and for the number of rational points over the finite field of unipotent partial flag variety. The definitions and examples of generalized mahonian statistic on the set of transport matrices and dual ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007